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Abstract. Modular Structural Operational Semantics (MSOS) is a vari-
ant of Structural Operational Semantics (SOS). It allows language con-
structs to be specified independently, such that no reformulation of
existing rules in an MSOS specification is required when a language is
extended with new constructs and features.
Introducing the Prolog MSOS Tool, we recall how to synthesize executable
interpreters from small-step MSOS specifications by compiling MSOS
rules into Prolog clauses. Implementing the transitive closure of compiled
small-step rules gives an executable interpreter in Prolog. In the worst
case, such interpreters traverse each intermediate program term in its full
depth, resulting in a significant overhead in each step.
We show how to transform small-step MSOS specifications into correspond-
ing big-step specifications via a two-step specialization by internalizing
the rules implementing the transitive closure in MSOS and ‘refocusing’ the
small-step rules. Specialized specifications result in generated interpreters
with significantly reduced interpretive overhead.

Keywords: interpreter generation, structural operational semantics,
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1 Introduction

Background. Structural operational semantics (SOS) [21] provides a simple and
direct method for specifying the semantics of programming language constructs
and process algebras. The behaviour of constructs defined by an SOS is modelled
by a labelled transition system whose transition relation is defined by a set of
inference rules and axioms. For programming language semantics, the configura-
tions of the transition system are typically given by terms and auxiliary entities,
such as stores (recording the values of imperative variables before and after each
transition step) and environments (determining the bindings of identifiers). In
conventional SOS, auxiliary entities are explicit in all rules. This gives rise to the
modularity problem with SOS: language extensions involving new auxiliary enti-
ties require reformulation of existing rules. Modular SOS (MSOS) [16] solves the
modularity problem in SOS by implicitly propagating all unmentioned auxiliary
entities.
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Besides propagating auxiliary entities, small-step (M)SOS rules relate terms
to partly evaluated terms. Evaluation in small-step (M)SOS specifications is
given by a sequence of transition steps that eventually reaches a final state. In
contrast, big-step (M)SOS rules relate terms directly to final states. As illustrated
elsewhere [2,16], small-step rules are typically more concise than big-step rules
for programming languages with abrupt termination and/or divergence.

The PLanCompS 1 project is developing an open-ended set of reusable funda-
mental constructs (or funcons), whose dynamic semantics is given by small-step
MSOS rules2. Translating concrete constructs of a programming language into
fundamental constructs gives a component-based semantics. MSOS rules provide
a basis for verification, using, e.g., bisimulation [5,18] or structural induction on
the underlying MSOS rules [16], and prototype interpreter generation. In this
paper we focus on generating prototype interpreters in Prolog.

Contribution. It is well-known that big-step SOS rules can be compiled into
Prolog clauses [7], and compilation of small-step MSOS rules into Prolog clauses
has been utilized and hinted at in earlier publications [5,15–17]. The present paper
presents the first systematic account of how to synthesize executable interpreters
in Prolog from small-step MSOS specifications. We also assess and show how to
reduce interpretive overhead in these interpreters.

The efficiency of generated interpreters is significantly improved by adapting
refocusing [9] to MSOS. This is achieved by specializing a refocusing rule wrt an
MSOS specification. The specialization forces evaluation of sub-terms, effectively
transforming small-step rules into big-step rules. Compiling these big-step rules
gives interpreters that avoid the computational overhead of decomposing the
program term in each intermediate step, which previous interpreters generated
from small-step MSOS specifications [3,5,16,17] have suffered from.

Through a subsequent specialization step, called striding, a small-step specifi-
cation is transformed into its corresponding big-step counterpart by compressing
corridor transitions, in a similar style to [8]. By left-factoring [1,20] the resulting
big-step specification, back-tracking in generated interpreters is minimized.

We demonstrate and illustrate our techniques on MSOS specifications due to
the pragmatic advantages of MSOS over SOS, but expect that the techniques
are straightforward to extend to SOS.

Related work. The Maude MSOS Tool [3] executes MSOS specifications encoded
as rewriting logic rules in Maude [6]. It allows for elegant representation of
MSOS rules utilizing Maude features such as sorts and records. The approach to
interpreting MSOS specifications is essentially similar to that of the Prolog MSOS
Tool, where evaluation is implemented by sequences of small-step transitions,
resulting in a significant overhead in each step.

The refocusing rule that we introduce is inspired by the work on refocusing
by Danvy et al. [8,9]. That work is based on program transformations applied to

1 Programming Language Components and Specifications: www.plancomps.org
2 In fact, funcons are specified using Implicitly Modular SOS [19], a variant of MSOS

with syntax closer to SOS.

http://www.plancomps.org
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functional programs implementing reduction semantics. In contrast, the special-
ization we present here applies directly to MSOS rules, and is based on simple
rule unfolding.

Partial evaluation in logic programming [10,13] has been extensively studied
as a means of compiling programs and speeding up interpreters based on binding
time analyses. The specializations that we consider here correspond to partial
evaluations of the refocusing rule wrt to small-step inference rules.

Horn logical semantics [11] uses Horn clauses to relate terms to values or
denotations. The big-step style inherent to Horn logical semantics makes specifica-
tion of control instructions challenging, as witnessed by Wang et al.’s suggestion
of using Horn logical continuation-based semantics [22] to handle abrupt ter-
mination: in the continuation-based approach each predicate is parameterized
over terms, semantic domains, control stacks, and continuations. In contrast,
small-step MSOS can deal with abrupt termination without parameterizing and
modifying existing rules. This paper uses small-step MSOS for specification, and
describes how to systematically derive a corresponding big-step specification by
specialization.

Refocused rules bear a striking resemblance to Charguéraud’s pretty-big-
step rules [4]. As demonstrated in [2], pretty-big-step rules can be derived from
small-step rules by unfolding refocused rules.

Outline. Section 2 reviews MSOS. Section 3 recalls how the Prolog MSOS Tool
compiles MSOS rules into Prolog clauses. Section 4 shows how to improve the
efficiency of generated interpreters by refocusing. Section 5 introduces the striding
transformation, which unfolds refocused rules into classic big-step rules. The
efficiency of generated näıve, refocused, and striding interpreters is assessed in
Sect. 6. Section 7 concludes and suggests further lines of research.

2 Modular Structural Operational Semantics

This section outlines the main features of MSOS by comparing it with SOS.

2.1 An Example SOS

SOS rules define possible transitions between configurations in an underlying
labelled transition system. In SOS, a configuration γ can make a transition to γ′

if: (1) γ matches the conclusion source of an SOS rule

C1 · · · Cn

γ
α−→ γ′

where γ
α−→ γ′ is the rule conclusion, α is a (possibly empty) transition label,

and Ci are the premises (e.g., transition steps or side-conditions) of the rule;
and (2) using only SOS rules, for each premise Ci we can construct an upwardly
branching derivation tree whose leaves are axioms, i.e., rules with empty premises
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and satisfied side-conditions3. For a more detailed introduction to (M)SOS, the
reader is referred to [16,21].

The following SOS rules define the applicative constructs let(id, e1, e2) and
bound(id). We let ρ range over environments, id over identifiers, e over expressions,
and v over values. The formula ρ ` γ → γ′ asserts that γ makes a transition to
γ′ under environment ρ. ρ[id 7→ v] returns an environment ρ′ where ρ′(id) = v
and ρ′(id′) = ρ(id′) for id′ 6= id.

ρ ` e1 → e′1
[let1-sos]

ρ ` let(id, e1, e2)→ let(id, e′1, e2)

ρ[id 7→ v] ` e2 → e′2
[let2-sos]

ρ ` let(id, v, e2)→ let(id, v, e′2)

[let3-sos]
ρ ` let(id, v1, v2)→ v2

ρ(id) = v
[bound-sos]

ρ ` bound(id)→ v

We now turn our attention to a semantics for sequential composition, seq(e1, e2),
variable assignment, assign(ref , e), and variable dereferencing, deref(ref ). We
let σ range over stores, ref over references, and skip is a value. The formula
〈e, σ〉 → 〈e′, σ′〉 asserts that the configuration given by term e and store σ can
make a transition to the configuration given by term e′ and store σ′.

〈e1, σ〉 → 〈e′1, σ′〉
[seq1-sos]

〈seq(e1, e2), σ〉 → 〈seq(e′1, e2), σ′〉
[seq2-sos]

〈seq(skip, e2), σ〉 → 〈e2, σ〉

〈e1, σ〉 → 〈e′1, σ′〉
[asn1-sos]

〈assign(ref , e1), σ〉 → 〈assign(ref , e′1), σ′〉

σ′ = σ[ref 7→ v]
[asn2-sos]

〈assign(ref , v), σ〉 → 〈skip, σ′〉
σ(ref ) = v

[deref-sos]
〈deref(ref ), σ〉 → 〈v, σ〉

Combining the constructs let, bound, seq, assign, and deref in SOS requires that
we reformulate all rules: the rules for let and bound must propagate a store σ;
similarly, seq, assign, and deref must propagate an environment ρ. We refrain
from this tedious reformulation, and use MSOS instead.

2.2 Modular SOS

Like in SOS, MSOS rules define transition steps; i.e., a configuration makes
a transition if we can construct a derivation tree using the rules defining the
transition relation. Auxiliary entities in MSOS are encoded in the label of the
transition relation, and are only explicitly mentioned when required. For example,
in Fig. 1 the [let1] rule makes no explicit mention of auxiliary entities, since they
are not explicitly used by that rule. Crucially, computations in MSOS require
labels on consecutive transitions to be composable. The remainder of this section
defines MSOS labels and label composition.

3 This notion of transition is based on positive SOS specifications. Rules with negative
premises are not considered here.
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e1
{...}−−−→ e′1

[let1]

let(id, e1, e2)
{...}−−−→ let(id, e′1, e2)

e2
{env=ρ[id7→v1],...}−−−−−−−−−−−−→ e′2

[let2]

let(id, v1, e2)
{env=ρ,...}−−−−−−−→ let(id, v1, e

′
2)

[let3]

let(id, v1, v2)
{−−}−−−→ v2

ρ(id) = v
[bound]

bound(id)
{env=ρ,−−}−−−−−−−−→ v

e1
{...}−−−→ e′1

[seq1]

seq(e1, e2)
{...}−−−→ seq(e′1, e2)

[seq2]

seq(skip, e2)
{−−}−−−→ e2

e1
{...}−−−→ e′1

[asn1]

assign(ref , e1)
{...}−−−→ assign(ref , e′1)

σ′ = σ[ref 7→ v]
[asn2]

assign(ref , v)
{sto=σ,sto′=σ′,−−}−−−−−−−−−−−−−→ skip

σ(ref ) = v
[deref]

deref(ref )
{sto=σ,−−}−−−−−−−−→ v

Fig. 1: MSOS rules for example constructs

Definition 1 (MSOS Label). An MSOS label L is an unordered set of label
components, where each label component ix=E consists of a distinct label index
ix and an auxiliary entity E such that each index is either unprimed (e.g., env)
meaning the label is readable, or primed (e.g., sto′) meaning the label is writable.

Label variables refer to sets of label components. The label variable ‘−−’ ranges
over sets of unobservable label components, while label variables ‘. . .’, X, Y, etc.
refer to sets of arbitrary label components.

Informally, a label component is observable if it exhibits side effects. An
example of an observable label component is the component pair sto=σ, sto′=σ′

such that σ 6= σ′. The change from sto to sto′ is an observable side effect. Another
example of an observable component is illustrated by the print construct:

[print]

print(v)
{out′=[v],−−}−−−−−−−−−→ skip

The out′ component represents an output channel. An output channel may emit
observable output several times during program execution. The observable output
of evaluating the print construct above is the single element list [v]. The label
component is unobservable when it contains the empty list, i.e., out′=[ ].

Environments, stores, and output channels each exemplify a distinct category
of label components. These categories define how information is propagated
between consecutive transition labels (i.e., how labels compose). Labels are
defined by arrows in a category. The category gives the semantics of label
composition [14,16]. For the purpose of this paper, the following definition of a
label composition operator ‘◦’ suffices:

– Read-only label components (e.g., environments) remain unchanged between
consecutive transition steps; e.g., {env=ρ} ◦ {env=ρ} = {env=ρ}.
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– Read-write label components (e.g., stores) compose like binary relations; e.g.,
{sto=σ′, sto′=σ′′} ◦ {sto=σ, sto′=σ′} = {sto=σ, sto′=σ′′}.

– Write-only label components (e.g., output channels) are monoidal, generating
lists of observable outputs; e.g., {out′= l2} ◦ {out′= l1} = {out′= l1 · l2},
where ‘·’ is list concatenation, and l1, l2 are lists.

The formula assign(ref , v)
{sto=σ,sto′=σ′,−−}−−−−−−−−−−−−−→ skip says that assign(ref , v)

makes a transition to skip under the label where the readable label compo-
nent sto is σ and the writable label component sto′ is σ′. It also says that no
observable side effects occur in the remaining label components. Label composi-
tion in MSOS propagates the written σ′ entity to the sto label component in
the next transition. The following consecutive steps illustrate this propagation:

seq(assign(ref , v), skip)
{sto=σ,sto′=σ′,−−}−−−−−−−−−−−−−→ seq(skip, skip)

{sto=σ′,sto′=σ′,−−}−−−−−−−−−−−−−−→ skip

The second transition has σ′ in both sto and sto′; i.e., no unobservable side
effects occur on the sto, sto′ label components. Since no observable side effects
occur in the second label, it could alternatively be written as {−−}.

3 Generating MSOS Interpreters

This section describes how the Prolog MSOS Tool synthesizes interpreters in
Prolog from MSOS specifications.

3.1 From MSOS Rule to Prolog Clause

MSOS terms are compiled as summarized in Table 1. Table 2 shows the compiled
Prolog clauses for the seq construct. Solving a goal step( , , ) in Prolog using
the compiled clauses corresponds to checking that the step is valid relative to
the MSOS rules. Using the clauses in Table 2, we can check that the term
seq(seq(skip, skip), skip) can make a transition step:

?- init_label(L), step(seq(seq(v(skip),v(skip)),v(skip)), L, X).

L = [env=map_empty, sto=map_empty, sto+=map_empty, out+=[]],

X = seq(v(skip), v(skip))

Here, init label initializes MSOS labels with initial label components; in this
case, env=map empty, sto=map empty, sto+=Sigma , and out+=Out. Solving this goal
executes the second Prolog clause in Table 2 which by label instance(L,unobs)

unifies sto=map empty with sto+=Sigma , and out+=Out with the unobservable
output out+=[].

3.2 Implementing the Transitive Closure in Prolog

The steps predicate4 generates the transitive closure of the transition relation:

4 This predicate is not tail-recursive. It is, however, possible to construct a tail-recursive
version: post comp accumulates sequences of emitted write-only data. If this data
were to be emitted as it is generated, the call to post comp could be removed.
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MSOS term Prolog predicate

Rule

s
C1 · · · Cn

γ
L−→ γ′

{ step(JγK, L, Jγ′K) :-

label instance(L, JLK),
JC1K, · · · , JCnK.

Transition step
r
γ

L−→ γ′
z

step(JγK, JLK, Jγ′K)

Readable label J{ix=E,X}K [JixK=JEK|JXK]

Writable label J{ix′=E,X}K [JixK+=JEK|JXK]

Unobservable label J−−K unobs

Map (e.g., ρ, σ, . . .) J [x1 7→ v1, . . . , xn 7→ vn] K [ Jx1K+>Jv1K, . . . , JxnK+>JvnK]

Terms, values,
and label indices

JtK Prolog atoms, annotated with
v( ) for values.

Variables JxK; Jx1K; Jx′K X; X1; X

Table 1: Compilation of MSOS terms into Prolog predicates

MSOS rule Prolog clause

e1
{...}−−−→ e′1

seq(e1, e2)
{...}−−−→ seq(e′1, e2)

step(seq(E1,E2),L,seq(E1_,E2)) :-

label_instance(L,Dots),

step(E1,Dots,E1_).

seq(skip, e2)
{−−}−−−→ e2

step(seq(v(skip),E2),L,E2) :-

label_instance(L,unobs).

Table 2: Compiled Prolog clauses for the seq construct

steps(T1,L,T3) :-

pre_comp(L,L1), step(T1,L1,T2), mid_comp(L1,L2),

steps(T2,L2,T3), post_comp(L1,L2,L).

steps(v(V),L,v(V)) :-

label_instance(L,unobs).

These clauses are mutually exclusive; i.e., values are final terms for which no fur-
ther transition is possible. pre comp, mid comp, and post comp propagate readable
and writable label components as described in Sect. 2.2.

?- init_label(L), steps(seq(seq(v(skip),v(skip)),v(skip)), L, X).

L = [env=map_empty, sto=map_empty, sto+=map_empty, out+=[]],

X = v(skip)

Prolog fails if no sequence of steps exists that yields a value:

?- init_label(L), steps(seq(seq(v(0),v(skip)),v(skip)), L, X).

false.
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Figure 2 summarizes the number of inferences required for interpreters gener-
ated by the Prolog MSOS Tool to reduce terms of the structure5:

seq(seq(· · · seq︸ ︷︷ ︸
n

(skip, skip) · · · , skip), skip)

0

   300,000

0 500

In
fe

re
nc

es

n

naive

Fig. 2: Näıve evaluation of deeply nested seq terms

Since each step occurs on the outermost program term, the Prolog interpreter
traverses the term in its full depth in each step, i.e., each step uses O(n) inferences.
It takes n steps to evaluate a seq term of depth n, hence evaluation of deeply
nested seq terms uses O(n2) inferences. We next demonstrate how refocusing
reduces the number of required inferences to O(n).

4 Refocused MSOS Interpreters

The transitive closure implemented by the steps predicate in Prolog is straight-
forwardly internalized in MSOS by the −→∗ relation defined by the rules:

x
L1−−→ y y

L2−−→∗ z
[trans]

x
L2◦L1−−−−→∗ z

[refl-v]

v
{−−}−−−→∗ v

Evaluating a term s using these rules proceeds by constructing an upwardly

branching derivation tree, if one exists, from the root formula s
L−→∗ t . Using

5 Right-nested seq terms do not suffer from runtime overhead. This is not the case,
however, for deeply right-nested arithmetic expressions or λ-applications. We use
left-nested seq terms here for simplicity of exposition.
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Γ,∆, . . . to refer to instances of −→∗ and A,B, . . . to refer to instances of →,
derivation trees have the structure:

...
A

...
B

...
C . .

.

Ψ

∆

Γ

In generated Prolog interpreters this corresponds to traversing the entire program
term in each intermediate step. Ideally, we want to construct as few derivation
trees, and have as few traversals of intermediate program terms, as possible; i.e.,
we want to evaluate sub-terms as they are encountered. Augmenting our rules by
the following refocusing rule permits exactly this:

x
L1−−→ y y

L2−−→∗ z
[refocus]

x
L2◦L1−−−−→ z

The refocusing transformation forces evaluation of sub-terms by specializing
the refocusing rule wrt an MSOS specification. The resulting set of refocused
rules replace the original set of rules. The refocusing transformation unfolds the
leftmost premise of [refocus] wrt all rules in an MSOS specification:

C D
[d1]

B Γ
[refocus]

A
=⇒ C D Γ

[d1-refocus]
A

Using refocused rules changes the structure of derivation trees:

...
...

B

C
...

Γ
A Ψ

∆

For example, refocusing [seq1] (from Fig. 1, page 5) gives:

e1
L1−−→ e′1

[seq1]

seq(e1, e2)
L1−−→ seq(e′1, e2) seq(e′1, e2)

L2−−→∗ z
[refocus]

seq(e1, e2)
L2◦L1−−−−→ z

=⇒ e1
L1−−→ e′1 seq(e′1, e2)

L2−−→∗ z
[seq1-refocus]

seq(e1, e2)
L2◦L1−−−−→ z

Unfolding [seq2] and applying the [refl-v] rule trivially gives an identical rule.
Thus the refocused rules for seq are:

e1
L1−−→ e′1 seq(e′1, e2)

L2−−→∗ z
[seq1-refocus]

seq(e1, e2)
L2◦L1−−−−→ z

[seq2-refocus]

seq(skip, e2)
{−−}−−−→ e2
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Figure 3 summarizes the number of inferences the interpreter generated from
the refocused MSOS specification uses to evaluate deeply nested seq terms. In
contrast to näıve evaluation, the number of inferences increases linearly, since each
sub-term is reduced when it is first encountered: evaluation uses O(n) inferences.

0

   300,000

0 500

In
fe

re
nc

es

n

naive
refocused

Fig. 3: Refocused and näıve evaluation of deeply nested seq terms

Introducing the refocusing rule permits sub-terms to be evaluated locally in
derivations. Specializing the refocusing rule wrt an MSOS specification produces a
specialized interpreter which forces evaluation of all sub-terms. However, forcing
evaluation of sub-terms is not semantically sound in the presence of abrupt
termination.

4.1 Refocusing and Abrupt Termination

Consider the language given by the following add, blocking, block, and loop con-
structs, where +i is integer addition, and block′ is a write-only label component:

[block]

block
{block′=1,−−}−−−−−−−−−−→ stuck

e
{block′=1,...}−−−−−−−−−→ e′

[blocking1]

blocking(e)
{block′=0,...}−−−−−−−−−→ skip

e
{block′=0,...}−−−−−−−−−→ e′

[blocking2]

blocking(e)
{block′=0,...}−−−−−−−−−→ blocking(e′)

[loop]

loop
{−−}−−−→ loop

[blocking3]

blocking(v)
{−−}−−−→ v

v = v1 +i v2
[add1]

add(v1, v2)
{−−}−−−→ v

e1
{...}−−−→ e′1

[add2]

add(e1, e2)
{...}−−−→ add(e′1, e2)

e2
{...}−−−→ e′2

[add3]

add(e1, e2)
{...}−−−→ add(e1, e

′
2)
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If a block term is evaluated inside a blocking term, evaluation terminates and
produces the value skip. Evaluating the loop-construct results in divergence.

Under ordinary small-step evaluation of the term blocking(add(block, loop))
we have the two possible outcomes of evaluation: either evaluation terminates with
the value skip, or it diverges. If block is evaluated, the block′=1 label component
is matched by the [blocking1] rule for the blocking term, which terminates the
program with value skip. Otherwise, the sub-term loop is evaluated, which results
in a program term identical to the initial program.

Refocused evaluation, on the other hand, always diverges: evaluating block
gives the term add(stuck, loop). This term has an evaluable sub-term, namely
loop. Refocused evaluation forces evaluation of this term, resulting in divergence.
In other words, adding the refocusing rule to a semantics with abrupt termination
is not correct by default.

The issue of dealing with abrupt termination is symptomatic for big-step
rules. In the presence of abrupt termination, one typically needs extra rules
propagating the abruptly terminated term [4]. We show how to circumvent the
problem with abrupt termination in refocused and big-step MSOS rules in a
generic way: we introduce a special read-write label component, labeled by ε and
ε′, representing a flag indicating abrupt termination.

First, we add a single reflexive rule that propagates abruptly terminated
configurations6 (ε=1), and update our existing evaluation rules to indicate that
they apply only to configurations that are not abruptly terminated (ε=0):

x
{ε=0,X1}−−−−−−→ y y

L2−−→∗ z
[trans-ε]

x
L2◦{ε=0,X1}−−−−−−−−−→∗ z

x
{ε=0,X1}−−−−−−→ y y

L2−−→∗ z
[refocus-ε]

x
L2◦{ε=0,X1}−−−−−−−−−→ z

[refl-v-ε]

v
{ε=0,−−}−−−−−−→∗ v

[refl-ε]

x
{ε=1,−−}−−−−−−→∗ x

Second, MSOS specifications must explicitly indicate abrupt termination in rules.
For example, rules that are sensitive to the behaviour of their sub-terms, such as
[blocking1] which inspects the writable block′ component during evaluation of
its sub-term, must explicitly indicate abruptly terminating steps via ε, ε′:

[block-ε]

block
{block′=1,ε′=1,−−}−−−−−−−−−−−−−→ stuck

e
{block′=1,ε=0,ε′=1,...}−−−−−−−−−−−−−−−−→ e′

[blocking1-ε]

blocking(e)
{block′=0,ε=0,ε′=0,...}−−−−−−−−−−−−−−−→ skip

Using this alternative set of rules, refocused evaluation has the same possible
outcomes for the example term blocking(add(block, loop)) as small-step evaluation.

Refocusing is a simple specialization which significantly reduces overhead
compared to traditional small-step MSOS rules. However, it requires explicit
specification of abrupt termination and of rules for constructs whose behaviour

6 We refer to configurations as being abruptly terminated rather than stuck, since
the terms in the configuration may have computational behaviour. E.g., the
add(stuck, loop) term is not stuck in a strict sense, since it has evaluable sub-terms.
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is sensitive to the behaviour of their sub-terms. It is ongoing work to identify
syntactic constraints which uniquely distinguish abruptly terminating constructs
and constructs that are sensitive to the number of steps their sub-terms can make.
Such constraints would enable automatic insertion of ε, ε′ label components.

5 Big-Step MSOS Interpreters

A small-step transition relation relates terms to other partly evaluated terms.
Under refocused evaluation, the transition relation relates terms directly to values
or abruptly terminated terms. Refocused rules are therefore in big-step style.
However, refocused rules may use several intermediate inferences to map a term
to a value. The striding transformation specializes refocused rules to remove the
extra overhead. The resulting rules are similar to classic big-step rules.

5.1 The Striding Transformation

The striding transformation has the effect of compressing ‘corridor’ transitions
[8], i.e., transitions for which a unique further transition exists. The striding
transformation specializes a refocused rule, [d1-refocus], wrt another refocused
rule, [d2-refocus]. The result is a big-step style rule, [d1-d2-striding]:

C D

E ∆
[d2-refocus]

Γ
[d1-refocus]

A

=⇒ C D E ∆
[d1-d2-striding]

A

The striding transformation generates the set of all possible combinations of rule
unfoldings. To filter semantically equivalent rules resulting from the transfor-
mation, we use formal hypothesis simulation (fh-simulation) [18]. For example,
specializing the [seq1-refocus] rule wrt itself gives:

e1
L1−−→ e′1 e′1

L2−−→ e′′1 seq(e′′1 , e2)
L3−−→∗ z

[seq1-seq1-striding]

seq(e1, e2)
L3◦L2◦L1−−−−−−→ z

However, every possible step this rule can make can be matched by [seq1-refocus].
Hence, we omit this rule from the set of striding rules. Specializing [seq1-refocus]

wrt [seq2-refocus] gives the rule:

e1
{...}−−−→ skip

[seq1-seq2-striding]

seq(e1, e2)
{...}−−−→ e2

By the MSOS rules for the seq construct, substituting the → with −→∗ is equiva-
lent:

e1
{...}−−−→∗ skip

[seq1-seq2-striding∗]

seq(e1, e2)
{...}−−−→ e2
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This rule matches all steps that can be made using the [seq2] rule. There are
no rules which can match all possible steps that the [seq1-seq2-striding*] rule
can make. Any subsequent rule unfoldings can be shown to be equivalent to the
current set of rules by fh-similarity. Thus the set of rules resulting from applying
the striding transformation to the seq construct are:

e1
{...}−−−→∗ skip

[seq1-seq2-striding*]

seq(e1, e2)
{...}−−−→e2

e1
L1−−→e′1 seq(e′1, e2)

L2−−→∗ z
[seq1-refocus]

seq(e1, e2)
L2◦L1−−−−→z

5.2 Left-Factoring

The [seq1-refocus] rule relates a seq term to a result, which is characteristic of
big-step rules. While big-step derivation trees contain fewer inferences, compiled
big-step Prolog clauses potentially give rise to non-determinism and back-tracking
during proof search. For example, the conclusions of both [seq1-seq2-striding*]

and [seq1-refocus] match arbitrary seq terms. In the worst case, this non-
determinism leads to back-tracking, which would increase the number of inferences
required to evaluate terms that do not yield values.

Left-factoring [1,20] is a simple clause transformation which improves the
determinacy of Prolog clauses generated from big-step style rules:

H ← A ∧B
H ← A ∧ C =⇒ H ← A ∧ (B ∨ C)

Using this simple idea, Prolog clauses are transformed to obtain specialized
interpreters without the back-tracking penalty incurred by compiling big-step
style rules into Prolog clauses. Figure 4 summarizes the reduction in the number
of inferences resulting from striding and left-factoring when evaluating deeply
nested seq terms.

6 Benchmark Experiments

We assess the viability of the specializations proposed in previous sections by
considering a variant of a larger MSOS example semantics [5] with function
closures and imperative state.

Figure 5 summarizes the number of Prolog inferences used to calculate the
factorial of n, the nth Fibonacci number, and the greatest common divisor of
the nth and n+ 1st Fibonacci numbers using Euclid’s algorithm. Each program
is implemented7 in two ways: applicatively, based on recursive unfolding; and
imperatively, based on assignment and a while loop construct.

The refocusing rule introduces extra label composition operations in generated
Prolog clauses for refocused rules. For deeply nested program terms this saves

7 Benchmark code, generated interpreters, and details about the Prolog system used
are available online: http://cs.swansea.ac.uk/~cscbp/lopstr13

http://cs.swansea.ac.uk/~cscbp/lopstr13


14 C. Bach Poulsen and P. D. Mosses

0

   300,000

0 500

In
fe

re
nc

es

n

naive
refocused

striding

Fig. 4: Striding, refocused, and näıve evaluation of deeply nested seq terms

having to re-traverse the term in the next step. However, it entails redundant
computations for values. This explains both the encouraging speed-ups in the
applicative benchmarks (which unfold function closures to form deeply nested
terms), and the slight overhead that refocusing and striding introduces for shal-
lowly nested terms, such as the imperative factorial and Fibonacci benchmarks.

We emphasize that our specialization significantly reduces overhead in 4 out
of 6 benchmarks, where the number of inferences is reduced by 4 times or more.
Evaluating shallowly nested terms using big-step rules compared to small-step
entails a relatively modest overhead of around 1.3 times more inferences.

7 Conclusion and Further Work

We have described how to generate interpreters from MSOS specifications and
how such interpreters can be encoded in Prolog. After assessing the overhead of
interpreters generated from small-step rules, we applied refocusing and striding
to derive their big-step counterparts. The resulting generated interpreters signifi-
cantly reduced the number of inferences used to evaluate deeply nested program
terms.

Label composition is computationally expensive in generated interpreters as
Fig. 5 illustrates. Our label composition strategy alleviates the need to re-compile
rules as new constructs are added to languages, but requires us to traverse the
Prolog list representation of label components multiple times (in the worst case)
in each step. One could use a partial evaluator, such as Logen [12], to unfold
label composition predicates. This would correspond to compiling an MSOS
specification into an SOS specification, similar to compiling generalized transition
systems (underlying MSOS) to labelled transition systems (underlying SOS), as
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Fig. 5: Benchmark inference graphs

described in [16]. Unfolding label composition predicates in generated Prolog
interpreters should decrease the number of inferences required to evaluate terms.

The refocusing rule requires MSOS rules to be explicit about abruptly ter-
minating constructs and constructs that are sensitive to the number of steps
their sub-terms make. It should be possible to specify a rule format for conserva-
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tively identifying abruptly terminating constructs. This would enable automatic
annotation of MSOS rules with ε, ε′ label components.

Striding requires filtering specialized rules that are equivalent to existing ones.
We suggested using fh-simulation [18] for this. For the purposes of this paper,
these proofs were constructed manually. While bisimulation is undecidable in
general, it should be possible to automate proofs for at least some constructs.
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